博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ2387 Til the Cows Come Home(SPFA + dijkstra + BallemFord 模板)
阅读量:5143 次
发布时间:2019-06-13

本文共 5173 字,大约阅读时间需要 17 分钟。

Til the Cows Come Home
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 37662   Accepted: 12836

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 
Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N 
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5 1 2 20
3 4 204 5 202 3 30 1 5 100

Sample Output

90

Hint

INPUT DETAILS: 
There are five landmarks. 
OUTPUT DETAILS: 
Bessie can get home by following trails 4, 3, 2, and 1.

 SPFA:

1 #include 
2 #include
3 #include
4 #include
5 #include
6 #include
7 8 using namespace std; 9 const int INF = 10000000;10 const int MAX = 1000 + 10;11 int t,n;12 struct point13 {14 int e,w;15 };16 vector
g[MAX];17 int dist[MAX];18 void spfa(int v)19 {20 for(int i = 0; i <= n; i++)21 {22 dist[i] = INF;23 }24 dist[v] = 0;25 queue
que;26 que.push(v);27 while(que.size())28 {29 int x = que.front();30 que.pop();31 int len = g[x].size();32 for(int i = 0; i < len; i++)33 {34 int y = g[x][i].e;35 if(dist[y] > dist[x] + g[x][i].w)36 {37 dist[y] = dist[x] + g[x][i].w;38 que.push(y);39 }40 }41 }42 }43 int main()44 {45 while(scanf("%d%d", &t, &n) != EOF)46 {47 for(int i = 0; i < MAX; i++)48 g[i].clear();49 50 while(t--)51 {52 int s,e,w;53 point temp;54 scanf("%d%d%d", &s,&e,&w);55 temp.w = w;56 temp.e = e;57 g[s].push_back(temp);58 temp.e = s;59 g[e].push_back(temp);60 }61 62 spfa(n);63 printf("%d\n",dist[1]);64 }65 66 return 0;67 }
SPFA

Dijkstra

注意重边问题

1 #include 
2 #include
3 #include
4 #include
5 using namespace std; 6 const int INF = 10000000; 7 const int MAX = 1000 + 10; 8 int g[MAX][MAX],dist[MAX],vis[MAX]; 9 int t,n;10 void Dijkstra()11 {12 for(int i = 1; i <= n; i++)13 dist[i] = INF;14 memset(vis,0,sizeof(vis));15 dist[n] = 0;16 vis[n] = 0;17 int pos = n;18 for(int i = 1; i < n; i++)19 {20 int minn = INF;21 for(int j = 1; j <= n; j++)22 {23 if(vis[j] == 0 && dist[j] < minn)24 {25 minn = dist[j];26 pos = j;27 }28 }29 vis[pos] = 1;30 for(int j = 1; j <= n; j ++)31 {32 if(vis[j] == 0 && dist[j] > dist[pos] + g[pos][j])33 dist[j] = dist[pos] + g[pos][j];34 }35 }36 }37 int main()38 {39 while(scanf("%d%d",&t,&n) != EOF)40 {41 int s,e,w;42 for(int i = 1; i <= n; i++)43 {44 for(int j = 1; j <= n; j++)45 {46 g[i][j] = INF;47 }48 }49 for(int i = 0; i < t; i++)50 {51 scanf("%d%d%d",&s,&e,&w);52 if(g[s][e] > w)53 g[s][e] = g[e][s] = w;54 }55 Dijkstra();56 printf("%d\n",dist[1]);57 }58 59 }
View Code

Ballem_ford

1 #include 
2 #include
3 #include
4 #include
5 #include
6 #include
7 using namespace std; 8 const int INF = 1000000000; 9 const int MAX = 1000 + 10;10 int n,t;11 struct point12 {13 int s,t,w;14 };15 vector
g;16 int dist[MAX];17 void Ballem_ford(int v)18 {19 for(int i = 1; i <= n; i++)20 dist[i] = INF;21 dist[v] = 0;22 for(int j = 1; j < n; j++)23 {24 int len = g.size();25 int flag = 0;26 for(int i = 0; i < len; i++)27 {28 int s = g[i].s;29 int t = g[i].t;30 int w = g[i].w;31 if(dist[t] > dist[s] + w)32 {33 dist[t] = dist[s] + w;34 flag = 1;35 }36 }37 if(flag == 0) //加个flag 优化一下 38 break;39 }40 }41 int main()42 {43 while(scanf("%d%d", &t, &n) != EOF)44 {45 g.clear();46 int s,e,w;47 point temp;48 for(int i = 0; i < t; i++)49 {50 scanf("%d%d%d", &s,&e,&w);51 temp.w = w;52 temp.t = e;53 temp.s = s;54 g.push_back(temp);55 temp.t = s;56 temp.s = e;57 g.push_back(temp);58 }59 Ballem_ford(n);60 printf("%d\n",dist[1]);61 }62 }
View Code

 

转载于:https://www.cnblogs.com/zhaopAC/p/4992776.html

你可能感兴趣的文章
Vue安装准备工作
查看>>
oracle 创建暂时表
查看>>
201421410014蒋佳奇
查看>>
Xcode5和ObjC新特性
查看>>
LibSVM for Python 使用
查看>>
Centos 7.0 安装Mono 3.4 和 Jexus 5.6
查看>>
CSS属性值currentColor
查看>>
java可重入锁reentrantlock
查看>>
浅谈卷积神经网络及matlab实现
查看>>
解决ajax请求cors跨域问题
查看>>
《收获,不止Oracle》pdf
查看>>
LinkedList<E>源码分析
查看>>
Real-Time Rendering 笔记
查看>>
如何理解HTML结构的语义化
查看>>
Activity之间的跳转:
查看>>
实验四2
查看>>
Android现学现用第十一天
查看>>
多路复用
查看>>
Python数据可视化之Pygal(雷达图)
查看>>
Java学习笔记--字符串和文件IO
查看>>